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Lattice properties of strained GaAs, Si, and Ge using a modified bond-charge model
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A phenomenological lattice dynamics model based on the bond-charge model has been developed that
describes how strain affects phonon frequencies and elastic constants in grotdpsmupolay and IlI-V
(heteropolar semiconductor thin films and strained layers. A quasiharmonic approach is adopted, using force
constants that depend linearly on strain. This model uses available experimental data and can predict the effect
of arbitrary strains on nonpolar and polar semiconductor films. Using this model, the phonon dispersion
relations are obtained for bulk and strained-layer heterostructures of Ge and GaAs on Si, and the mode
Gruneisen parameters and the pressure dependence of second-order elastic constants are determined for bulk
Si, Ge, and GaAs. Also, it is shown that analyzing the effect of strains on semiconductors leads to a better and
more physical set of force constants for the bond-charge model for unstrained materials.

[. INTRODUCTION thermal expansion coefficients of the material layers in-
volved. The measurement of phonon frequencies can be used
Studies of the lattice properties of strained semiconducas a diagnostic tool to determine such strafhBor example,
tors provide the information about lattice anharmonicity Weinstein and co-workets'2 have considered how hydro-
needed for a fundamental understanding of phonons anstatic pressure tuning of lattice-mismatch-generated internal
elastic constants and for the investigation of novelstrain in two-component epitaxial films and multilayers
heterostructures.® These investigations include determining (groups I-V/1II-V and [1-VI/lII-V systems) affects Raman
the dependence of zone-center optical phonon frequencies @hifts. They used the microscopic g, andr parameters to
hydrostatic pressur@sotropic straif and the dependence of calculate the effect of tuning on the first-order Raman fre-
phonon frequencies on biaxial strain in strained-layer heteroduencies in systems grown along t#@91) and (111) direc-
structures, which are sometimes also under hydrostati#ons. Also, the folding of acoustic phonons and the confine-
pressuré. Theoretical attempts to explain these findings canment of optical phonons in superlattices can give rise to new
be broadly divided into two categories: those basedabn K~0 zone-center phonons that are ir and/or Raman active,
initio  density-functional theory, using either a linear- depending on the superperiodicity. These can also be affected

response or frozen-phonon approdchnd those based on by;train.l . wdies h it ted t del h
modifying phenomenological lattice-dynamical models. everal previous studies have attempted 1o modet how

These lattice-dynamical models account for the presence Gc,ftram affects phonon energies in partially ionic zinc-blende

strain either by modifying the harmonic force constants semiconductors. Cerdeirt al* used the microscopip, g,
y 9 'andr parameters to account for the strain shift and splitting

Wh'(.:h IS I_<nown as _the quasiharmonic apprommaﬂon, or byof the zone-center phonon frequencies. They evaluated these
adding third- and higher-order anharmonic terms to the harg,.ameters by using Keating and valence-force-field models
monic Hamiltonian. In a previous study, Sui and Herr’hgn and assumed that the splitting between zone-center TO and
used both of these approaches to modify the Keating{ 5 modes in heteropolar semiconductors is independent of
valence-force-fieldVFF) model to study, both analytically - strain, Later, Hnermannet al*® employed effective charge
and numerically, the effect of arbitrary stress on phonon disgeformation potentials to account for the different strain shift
persion and elastic constants of group IV semiconductors angf these modes. Talwar and Vandevyvarsed an 11-
strained layers of these materials. This treatment can be aparameter rigid-ion model to study the effects of pressure on
plied only to nonpolar semiconductors. The current papethe vibrational properties of Ga-In pnictides. While their
expands this study to polar semiconductors by modifying thene-phonon and two-phonon densities of states, Debye tem-
Weber bond-charge model® (BCM) by using the quasihar- peratures, Gmeisen constants, and linear thermal expansion
monic approximation. The modified bond-charge model iscoefficients were all in reasonably good agreement with ex-
applied to GaAs, a polar semiconductor, and, for comparisorsting experimental data, their model predicted flatness of the
purposes, to Si and Ge, nonpolar semiconductors. lowest TA branches at ambient pressure but not at elevated
The symmetry of a crystal can be altered by the presencpressures. This raised the question of whether the bending of
of strains, and this symmetry change can lift phonon degenthe TA branch under compression was an artifact of the rigid-
eracies. Also, phonon frequencies shift linearly with strain tolon model or was due to the peculiarity of compound semi-
first order. Such strains may result either from externakonductors.
stresses or from specific growth conditions or modifications Weinstein and Zallehsuggested use of the bond-charge
of the materials. Built-in strains in epilayers and superlatticesnodel to study the pressure dependence of phonon disper-
are produced by lattice mismatch or by compression follow-sion relations. Mayer and Wehriétried to extend the BCM
ing deposition at higher temperatures, due to the differento account for the strain-dependent phonon properties of Si
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by including third-order anharmonic potentials. The model
Grineisen parameters they obtained were not in good agree-
ment with available experimental values. They suggested
that the problem was in the harmonic part of the potentials
and then modified the BCM by including shell interactions
similar to those in the shell mod&l.This model with eight
harmonic and five anharmonic parameters produced reason-
able agreement with experimental results. Very good agree-
ment is obtained here by modifying the original BCM, with
no added shells. - &
In this paper, the bond-charge model is reviewed in secl!tl ™
[l A. This subsection also details how the BCM can be modi-
fied to include strain by modifying the force constants. In
Sec. Il B, the strain-modified force constants are determined
by fitting the model to the experimentally available '&ru
eisen parameters. The mode Geisen parameters are deter-
mined along thd™-A-X-K-T"-L-X directions in bulk Si, Ge, — €3  BondCharges
and GaAs. Section Il C discusses how biaxial strain in the (i
(001) and (111) planes affects phonon frequencies in GaAs ) ) ) )
and Ge epilayers on Si. This is followed by the treatment of FIG. 1. Structure of the unit cell and the interactions in the
the pressure dependence of phonon frequencies in straingamj'Charge model.
Ge layers on $001)) in Sec. Il D. These results are discussed o ,
in Sec. IIl, and concluding remarks are presented in Sec. Vesented by the Keating interactions between the BGg).

A preliminary version of this paper was published as Ref. 16F0r interaction(b) there are separate terms due to the inter-
actions of the bond charges with cations and anions, and for

interaction(c) there are different force constants associated
with the BC-cation-BC and BC-anion-BC angles.

Il MODEL Bond charges of magnitude-Ze are located at
ri=ro(1+p)/2 andr,=ry(1—p)/2, wherer, andr, are the

A. The bond-charge model respective distances to the catitaways labeled as)land
1. Ambient pressure anion (labeled as 2, respectively, and,, is the bond length

between nearest-neighbor ions. For homopdtiamond

Several lattice-dynamical models have been designed thmiconductosz and for 11Il-V (zinc-blendé semicon-
reproduce phonon dispersion curves, determined expermegyciors including GaAs, it has been found that0.25 at

tally at ambient pressure, to the desired accuracy. One iMympient pressure. lons are assumed to carry the charge 2Ze.
portant characteristic pf the phonon dlspgr5|on of diamond  The total energy of the unit cell can be written using the
and zinc-blende semiconductors at ambient pressure thapqgye interactions:

must be reproduced by the model is the very low frequency
of TA branch phonons relative to LA phonons and the flat-

— 1)
ness of the TA branches away from the zone center. Strauch®roa=4Pi12(10) +4®Pi1 pc(r1) +4Pi5 pc(r2) +6[Vip
and Dornet’ have compared the major phenomenological 4722
model_s on the basis of rep_roducing the phonon frequencies +Vf)%)]+6[‘1’1(t1)+‘1’2(t2)]—am —, (1)
and eigenvectors and elastic constants of GaAs. The Weber €ho

bond-charge mod&l® was found to be the model with the _ _ _ _

fewest adjustable parameteffour parameters for most wheree is the dielectric const_anb;,\,I is the Madelung con-

diamond-structure materialive for diamond and six pa- Stant, andt; andt, are the distances between any pair of

rameters for zinc-blende materihte give the best fit to the Pond charges adjacent to ion 1 and ion 2, respectively; the

experimental dispersion curves. last term is th_e total Coulomb_ energy of the unit _ceII. Th_|s
In the bond-charge model, adiabatically moving, pointlike€guation also includes an addlponal central force interaction

bond charge¢BC's) are introduced on the bonds to mimic (¥) between bond charges, which has been found to improve

the charge distribution of bonding electrdhor homopolar ~ the modef’ It is defined by

semiconductors the BC’'s are in the middle of the bond,

whereas for(heteropolar Ill-V semiconductors they are Vi=v,=0 and¥]=—-¥;=(8,—B)/8, (2

nearer to the anions. The main BCM interactions @jehe

central potential between ngarest-neighbor icﬁ'rum-ion) where, is defined below.

®iy., (b) the central potential between nearest-neighbor | the harmonic approximation, the equation of motion of

ions and BC's(ion-BC) ®j,.gc (v=1, 2, (¢) the Keating  the crystal is written a8

bond-bond bending interactioBC-BC) V,,,, and (d) the

Coulomb interactions between all ion-ion, BC-BC, and

ion-BC pairsVcouomy: These interactions are depicted in Fig. 0(1x) = IProtal _
K-

= — = — . | ’I 1! U I 1o ,
1. Metal-like bonding is represented by the short-range cen- “ aui(l k) ,%“,j oy (Ll acu (1)
tral forces between ion@b;,_;,) and covalent bonding is rep- 3)
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wherel  is the index for thexth atom in thd th unit cell,M,, Z2e2
is the mass of atorr, andu;(l ) is theith componentX,y, D1 i,=—ay 2er” (10
or z) of the displacement of atomnc. ¢ ;;(1 ;1" ") is called 0
the atomic force constant and is given by Using Egs.(1) and (9b), along with the auxiliary condition
5 given by Rustagi and Webgr,
(,D--(|K'|’K')= d CDtotaI ‘ (4)

A au(l)ou; (') (1+p)®!; get (1—p)P/, 5c=0, (11)
where 0 implies that the derivatives are evaluated at the equéne finds
librium point and®,,, is the total potential energy of the
unit cell. ®fypc 1-p day 2% 19
. The explicit form of the Keating bond-bending interaction r, “1+p dp Srg (12)

and
(V) (e oty — v . ’ 272
Vi (ki) = gz [R(xv)-R(x'v) a3, I, ®lppc  1+p day 2%

r, 1-p dp erd’ (13

k,k'=3,4,5,6, 5
wherev=1 or 2 depending on whetherand «’ is adjacent So at ambient pressure the BC model has six free param-

N " " _ 52
to ion 1 or ion 2,R(xv) is the position vector of the BC with eters:®iy o, iypc, Piz.aey Biy Boy and{=2Z%/e. For ho-
respect to the ion at the bond-angle vertex, andnoPolar systems;, gc==®;; gc and B;=p,, and so there
a3,=—R(kv)-R(«'v)o. are only four free parameters.

The atomic force constant for each of the three central 1he €quation of motion, E¢3), is solved with a choice of
interactions(®;y.», ®i1.sc, and @, 50) can be expressed displacement of the form

as?® . .
u(lk)=uj(k)exd —iwt+ik-x(1)] (14
QDiCjenUK;' "k )= r‘_gj[q)"_ qu} which transforms Eq(3) into
r r
+@q),] © Mo2(K)Ui(k)= >, Dij(xk’;K)uj(’),  (15)
r ' «']
r=x(lc)—x(1" k")
wherex(l k) is the position vector of the partickein thelth where Djj(x«’;k) are the elements of the Fourier-
unit cell. transformed dynamical matrix, which are given by

The atomic force constant from the Keating-type interac-
tion (c), differentiated with respect to bond charges only, is Dij(KKf;k)ZE @i (0k;1 k" Yexp{—ik-[x(0k) —x(1x')]}
|

(pﬁ(IKH'K')::%Ri(K’V)RJ(KV), Kk,k'=3,4,5,6, +Dﬁ(KK';k), (16)
Ov

(7)  where D §(x«';k) is the Coulomb part of the dynamical

while that differentiated with respect to bond charges andnalrix which is evaluated by using Ewald's methdd.
Equation(15) is a set of 18 equations for the displace-

ions is
ments of six particles. It can be reduced to a set of six equa-
B 6 tions for the displacements of the ions because the bond
ofi(li;l' k)= EVQ— > R(m)[Ri(«' v)+Ri(1)], charges move adiabatically. This gives
oy ™=3

effective_ rion-ion BC-ion* BC-BC1—1mBC-ion
k=12 andk'=3,4,5,6. €) P P [P OT=DE (4)
where theD’s are those parts of the dynamical matrix refer-
The values ofd’ in Eq. (6) are fixed by the lattice stabil- enced by their superscripts afiddenotes Hermitian conju-
ity constraint, which is determined by the equilibrium condi- gation. The electroribond-chargginteractions are now ef-

tions fectively included as ion-ion forces.
Vibrational frequencies and displacements are obtained
D otal o (9a  from the eigenvalue equation
dro |, _ . ’ .
ro=(ro)equilibrium |Diejffect|ve( ki K)— M sz(k) 8ij O |=0, (18
3P oral -0 (9b) where nowk andx’=1,2. The second-order elastic constants
ap ' are calculated with the long-waves meth8dhe values of

P=(P) equilibri . . .
equilirium the force constants used at ambient pressure are listed in

Using Eqgs.(1) and(9a), Table I.
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TABLE I. Harmonic force constants and their strain-modifier parameters. The first five rows have units of
€?/V, whereV is the unit-cell volumewith data from Ref. 8 for Si and Ge and Ref. 9 for GaAbe other
rows are unitless.

Si Ge GaAs8

Harmonic force constants

Mio 18.63 19.83 18.48
P! sc 19.41 17.13 7.05
P!, 5 19.41 17.13 48.15
B 8.60 8.40 5.36
Bo 8.60 8.40 8.24
4 0.180 0.162 0.187
Strain-modifier parameters
Mi1.i2 -12.70 -12.73 -12.77
Mi1-BC 12.19 12.27 -6.12
Mis-BC 12.19 12.27 9.74
Mg, —2.75 -1.18 ~4.97
Mg, -2.75 -1.18 —2.66
lp, -3.18 —2.54 —3.63
lg, -3.18 —2.54 251
m, 11.83 12.55 13.57

aReference 9 gives linear combinations of these harmonic force constants.

2. Arbitrary strain In the second and third terms of Ed.9) and the second
For a strained crystal, the harmonic approximation is stillté™™ of Eq.(20), the changes in the first and second potential

used and it is assumed that atoms in the deformed crystderivatives and the Keating, are taken in theguasihar-
experience harmonic oscillations about their new equilibriurf©NIC @pproximationThe central ion-ion and ion-BC inter-
positions. The effect of strain is incorporated by incIudingaCt'O” parameters are scaled with the change in the distance

changes in the elements of dynamical matrix due to the pre2€tween the two “particlesTi.e., ions or BC'3, while the
ence of the strain. Keating bond-bending parameters are scaled with the change

The change in the atomic force constants derived froni? the distance between BC's and the change in the angle
central forcedEq. (6)] due to strain is between the bond charges. Consequently,

Ar
rir D' ryr R A e
A[QDicjent'K;"K')]:A %} q)”_T}_F%A[(p"] AD{ |1-|2[m|1-|2 ro |’ (2239
I’irj @’ " " Arv
+ 5”— r—2 A T (19) A(biV-BC:(I)iV-BC miV—BCr_ ’ v=1,2, (22b)
and for Keating-type interactiori&q. (7)] it is At,r A[cog 0,,)]
ABV(KYK,):BV mB + B 0 ’
, "\ tewr v cogéd,,..)
K ;. Ri(VK )R](VK) KvK
Algij(Ix; ") =B A ——
4ag, v=12, (229
R_ ! R . . - _. . .
+ i(ve")Rj(vk) AB,. (20) whereAr is the change in the ion-ion distanc®r , is the

change in the distance between iorand the bond charge,
t.. is the distance between the bond chargesd«’, and

The first terms in Eqs(19) and (20) give a “lattice con- eiw, is the equilibrium bond anglgno strain) between bond

tribution” due to changes in the geometry due to strain,chargesc and«’ around the iorw. Equationg10), (12), and
which are, respectively, (13) for @' still apply at the new strained equilibrium posi-

tion.
>
A

Only either the magnitude or position of the bond charge
whereAr is the strain-induced change iin and

4ag,

!

1

14

rirjr)\
Mo +ron——7— }Arx (218 js assumed to change, according to

Ar

Ri(vk")Rj(vk)

. where( is eitherZ?/e or p, andr refers to the length of the
4ag,

. (21b
bond on which that bond charge is located. The Coulomb

B,A
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force constants are calculated for strained crystals by using TABLE Il. Mode Grineisen parameters used in the nonlinear

Ewald’s method, which includes any “lattice contribution.”
For the most general case, there are a total of eight force

constant-modifier strain parameterg’¢ andl’s) in Eq. (22).

For homopolar systems, this reduces to five parameters.
For an arbitrary strain, the position vectors and bond

angles change as

Ax(lk)=u,=&-x(l K)—ag[syz,sxz,gxy]-r-l- ug, (23

1
A(coH, )= E[R(KV) ‘Uo+R(k'v)-u.], (24

whereuy is the dynamic displacement, is the symmetric
strain tensorx is the bond vector{ is the internal strain
parametera=a, /4 for ions andg, /8 for bond chargega, is
the lattice constaptandT stands for transpose.

least-squares fit.

Si Ge GaAs

Yo 0.98+0.06* 1.14+0.0Z 1.23+0.07
Yro(D) 0.98+0.06" 1.14+0.0Z 1.39+0.07
Yo(X) 1.02 117

Yro(X) 1.50+0.2 1.49 1.73+0.07
YaX) 1.0? 117

yra(X) —1.4+0.3 —1.53+0.0%° —1.62+0.05°
Yo(L) 1.62 1.62

yro(L) 1.30+0.2 1.2¢ 1.48+0.15
ya(lL) 0.48 0.59

yra(L) -1.3+0.3 —1.4 —1.72+0.1%

“Reference 2Fexperimental

The dynamical matrix for the strained lattice is obtainedReference 3from ab initio calculation cited therejn

from Eq. (16) by the replacements
@ij(0x;1 k") — @i (0k; T k") + Al @i (0k; 1 &") ],
and
Dﬁ_’ D ﬁ | strained (25
whereA[¢;;(0«;l«")] is calculated from Eqs19) and(20).

‘Reference 2@experimental
dreference 23experimental
®Reference 2@experimental

guasiharmonic model fit of the Gmeisen parameters to the
experimental data is smalB.1) for the set from Ref. 8 and
larger(5.4) for that from Ref. 19. The quasiharmonic param-
eters for Si and Ge are listed in Table I. For Si and &g,

Vibrational frequencies and displacements are obtained bgnd m, are found to be negative, and;;_gc and m, are

using Egs(17) and(18) with the above replacements.

B. Hydrostatic pressure

When the crystal is subjected to hydrostatic pressure, th

strain is diagonal and is given by,=—P/3B; P is the

applied pressure an is the bulk modulus. The symmetry
of the crystal is not lowered and consequently the bon

angles do not change, so thaerms in Eq.(22¢ vanish;

bond lengths change byr=r,e,. The force constants are

modified according to Eq(22). The lattice contribution
terms[Egs. (219 and(21b)] are zero. All of them terms in

Eq. (22) are determined here from the dependence of phono
frequencies on hydrostatic pressure at critical points. Thi§h

dependence can be characterized by the modedisen pa-
rameter, which is defined as
yiz—dlnwi /dan:_Awi/(38h(1)i), (26)

whereV is the volume of the crystal ang, is the frequency
of theith phonon mode.

positive. This means that the ion-ion interactions get stronger
with compression, whereas the ion-BC interactions get
weaker. For Gem;; i, —M;;_gc, and—m;, are almost equal

to each othefm;,_,~—12.7); this is approximately true for

8i. For both Si and Gen; is very small, as is expected since
the Keating bond-bending interaction is dependent on the

cgond angles and hydrostatic pressure does not change the

ngle between the bonds.

The harmonic force constants used for GaAs are from
Ref. 9 and are listed in Table I, and the experimental mode
Grineisen parameters are listed in Table Il. This choice of
harmonic force constants is discussed in Sec. Ill. The calcu-
[Ated values ofn’s for GaAs are given in Table I. These are
e values obtained by taking the bond-charge position, and
not its magnitude, as the fitting parameter. Fits were poorer
when either only the bond charge was changed with strain or
both the bond charge and position were changfedr Si and
Ge the bond-charge magnitude had to be changeg.;, is
very similar to that for Si and Ge~—12.7. m,~13.6 for
the bond-charge position which suggests that bond charges

The m's are obtained by a nonlinear least-squares fit toare moving towards the center of the bond for isotropic

experimentally available;’s at thel’, X, andL points of the

strain. Consequently, it is reasonable that the strain param-

Brillouin zone (Table 1l). The mode Grneisen parameters eters for ion-BC interactions for the cation and anions
are calculated from Ed26) by taking the differences of the (m;;.gc andm;,_gc) have opposite signs.

mode frequencies obtained from E48), by using the dy-
namical matrix[Eq. (25)], for ambient and smal(~0.01)
hydrostatic strains.

In Fig. 2, the dispersions in the Si, Ge, and GaAs mode
Gruneisen parameters are plotted alonglfh&-X-K-T"-L-X
directions. Using these results, no substantial change in the

The harmonic force constants used for Si and Ge are frorshape of the TA branches with pressure is found, which is

Ref. 8 and are listed in Table I, and the “input” mode @fu

contrary to the results of Ref. 2.

eisen parameters are those used in Ref. 3 and are listed in The change in elastic constants is obtained by using the
Table Il. Several sets dfambient-pressujeharmonic force method of long wave$ to obtain these constants for strained

constants were tested for Ge, each of which reproduces lagnd unstrained structures, using the respective force con-
tice properties at ambient pressure quite well. The quality oktants, and then taking the difference. The pressure deriva-
the fit of the modified BCM was found to be sensitive to thetives of the elastic constants are presented in Table Ill for Si,
exact choice of harmonic force constants. Tyfefor the  Ge, and GaAs. The calculated pressure derivatives of the
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2 TABLE I1ll. Pressure derivatives of elastic constants for Si, Ge,
{(a) and GaAs(unitless.
TO
] o R~ | ﬁ Si Ge GaAs
19 'U\/Sb ¢
] dCy/dP
1 Calculated 49 5.2 5.3
= ol ﬂ Experimental 42 4.6
; . dC,,/dP
1 Calculated 49 5.2 5.1
1 Experimental 42 4.6°
1] £ dCyl/dP
T Calculated 2.1 29 2.4
]si Experimental 25 1.%
_21"".“”AHXHKHIHHI"HHL”HX dB/dP
Wave vector Calculated 491 5.21 5.24
Experimental 4.2 4.7¢ 467
2
(b) p ® p ®From Reference 21.

similar for Si, Ge, and GaA<C;; andC,, change at nearly

] )
b
: > TN A CFrom Reference 20.
;] "d-\/ b From Reference 2.
L LA
\ the same rate, which is much faster than thatGgy. The fit

&0
1 would be even better if the force-constant strain-modifier pa-
] K rameters had been determined by using both the experimen-
] £ tal Grineisen parameters amtC;;/dP.

1 Ce C. Biaxial strains
0, 0 I EPUR TS PR B

Nonuniform strains modify the symmetry of the crystal
Wave vector and partially lift the degeneracy of some phonon modes, in
addition to shifting the mode frequencies. In this model, bi-

2 Ic) axial strains in thg001) and(111) planes are used to deter-
1 0 %}%4 mine thel parameters, which describe how the force constant
E Lo
| —
LA

|
=4
x
x
b |
—
>

of the Keating bond-bending interaction changes when strain

\/—\ changes bond angl¢Eq. (229)].

1_

1. Biaxial strain in the (001) plane

Biaxial strain in the(001) plane can arise during pseudo-
morphic growth of a thin film on 4001) substrate with a
different lattice constant. The strain tensor can be decom-
posed into a hydrostatic pagt=2(1—C,,/C;1)e,,/3 and a
shear part e=—(1+2C;,/Cq1)ey /3, Where &g,y
=(as—as)/a;, andag anda; are the lattice constants of the
R P AT e substrate and film, respectively. Ti;'s are the(second-

r A X K ordep elastic constants of the film.
Wave vector The hydrostatic component of the strain affects only the
bond length, while the shear part changes only the bond

FIG. 2. Dispersion in mode Gneisen parameters along the angles. The distance between bond charges is affected by
I'-A-X-K-I'-L-X directions for(a) Si (circles are data from Ref)3  changes in both bond length and bond angle. Referring to
(b) Ge (circles are data from Ref. 3, diamonds are data from RefFig. 1, the fractional change in the cosine of the bond angle
26), and(c) GaAs(circles are data from Ref. 20, diamonds are datais 4e,, for the angles defined by the bond charge pairs 3-4,
from Ref. 23. 3-5, 4-6, and 5-6, and it is-8e,, for pairs 3-6 and 4-5. The

distance between the bond charges in each pair changes by
bulk modulusB for Si (4.91), Ge(5.21), and GaAg5.24 are  the same fraction. In homopolar materials, zone-center opti-
in reasonable agreement with the experimental values 4.24al phonon frequencies split into a singlet and a doublet. In
4.76, and 4.67° respectively, as are the calculated pressuréeteropolar materials, zone-center LO and TO modes split
derivatives of the elastic constar@s; for Si?! The general into a singlet and a doublet LO and a singlet and a doublet
trends in the change &;,, C,,, andC,, with pressure are TO. In superlattices, in addition to these strain shifts there is

o
—
x
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a frequency shift for optical phonons as a result of 3. Results
confinement?

For Si and Ge, to obtaifs the frequency splitting is
needed at th& point when there is biaxial strain in either the

When biaxial strain is in thél11) plane, in addition to the (001 or (111) plane; the(001) splitting is used here to de-
macroscopic strain an internal strain paramétierneeded to terminelﬁl and the(111) splitting is used to check this value.

define uniquely the relative position of the atoms. This givesror GaAs, both strain configurations are needed to obtain
the relative displacements of the two face-centered-cubic laj

2. Biaxial strain in the (111) plane

i  the di 4 struct 8, andlﬁz. The experimental data used are the same as those
ices of the diamond structure. Lo . . .
The elements of the strain tensor are cited in Ref. 3 for Si and Ge, and determined in Ref. 23 for
GaAs. The calculatet parameters are presented in Table I.
2Cy4 In Figs. 3 and 4, phonon frequency shifts for GaAs and
8h:2C44+ Cot 2C128”’ 27 Ge lattice matched to §01) and S{11]) (_biaxial strain of
~0.04 for both systemsare plotted using these strain-
C;,+2Cyy modified force constants. For thi®01) biaxial strain con-
o= g, (28)  figuration, the strain-induced shifts of the Ge LO and TO
2(:44+ C11+ 2012

modes are seen to be very similar to those for the GaAs LO
whereg;, and e, are the hydrostatic and shear componentsand TO modes, except the LO modes in Ge and GaAs differ
andg is the in-plane lattice mismatch strain. greatly towards the zone boundary. The shift in the GaAs TO
There are two different bond-length and bond-anglemode can become quite large-25 cm Y). For the (111)
changes for this strain configuration. The change in the bondtrain configuration, the shifts and splittings of the corre-
angle defined by the 3-4, 3-5, and 3-6 pairs is the negative adponding modes in Ge and GaAs are qualitatively similar.
the change in other pairs. As witd01) strain,(111) strain  For this configuration, the LO shift is significantly smaller
splits each optical phonon at thiepoint into a singlet and a than that for the TO mode for both Ge and GaAs8 cm *

doublet. vs 20 cm'}).
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FIG. 3. Phonon frequency shiftsw along the growth direction FIG. 4. Phonon frequency shiftsw along the growth direction
in (a) Ge and(b) GaAs commensurately grown on(S01). in (@) Ge and(b) GaAs commensurately grown on(E11).
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are similar to those determined in Ref. 3. The modified BCM
and Keating/VFF model have the same number of harmonic
force constants and they perform similarly.

In addition to obtaining numerical results, Ref. 3 used the
quasiharmonic approximation to derive analytic expressions
that describe how strain changes phonon frequencies at the
critical points in the Brillouin zondI™,X,L), which could be
fitted by experiment. In the current work, it is difficult to
obtain analytic expressions because of the structure of the
dynamical matri{ Eq. (17)] and the difficulty in inverting a
12X12 matrix analytically. Though this matrix has a simpler
structure for high-symmetry points and directions, it still
cannot be inverted analytically for these special cd$¢mw-
ever, analytic expressions at tlhepoint can be derived for
homopolar(group 1V) systems,

One important difference between the findings of this

FIG. 5. Pressure derivatives of mode frequencies for Ge. Dashe@ork and those of Ref. 3 is in the change in the TA mode
lines are for Ge commensurately grown ori08il) and solid lines  frequencies along the growth direction for G&) grown on

dw/dP (cm=1/kbar)

Wave vector

are for bulk Ge. Si (Ge) (001). Contrary to the results of Ref. 3ee Figs. 5
and 6 in Ref. 3 it is found here thalw(TA) is negative
D. Strained films under hydrostatic pressure (positive) along the growth direction for Ge on §ig. 3a)]

At ambient pressure, the lattice mismatch for Ge or GaAdSi on Ge, not ShO\_MH_—Increa_smg in magmtuqle towards the
grown on S{001) is ~4%. Under hydrostatic pressure, the ZON€ b_OL_Jr_1dary; thls_ is also in agreement Wlth the results of
hydrostatic part of the strain in the layer is the ab initio calcullatlons of Ref. 6. Taking into account the
negative mode Gneisen parameter for these branches and
the fact that the traceless part of the biaxial strain does not
1- Col|&xx (29 affect the transverse mode frequencies much, it is expected

1 that Aw(TA) is negative(positive for Ge on Si(Si on Gé
wheree,, is the pressure-dependent lattice-mismatch straingrowth. This difference with Ref. 3 suggests that the interac-
defined by tions included in the Keating/VFF model may be insufficient

and that the BCM interactions may be physically more
as(P)—as(P) sound. In the Keating/VFF model the flatness of the TA
ag(P) (30 mode dispersion is determined by long-range interactions,

. while in the bond-charge model it is determined by a com-
as(P) anda¢(P) are the pressure-dependent lattice constantgination of ion-BC and BC-BC interactions.

for the substrate and film, respectively. Hydrostatic pressure Ta\war and Vandevyvémodified the 11-parameter rigid-
tunes the built-in biaxial strain through E(B0), which to  on model to study the pressure dependence of several lattice
first order inP gives properties, such as the thermal expansion coefficientnGru
ol 1 1 eisen parameters, and Debye temperature, of group Ill-V ma-

ar( )[ }p, (31) terials by using 11 pressure parameters to scale the force
as(0)|3B; 3Bs constants. It is seen here that there is much better agreement
where a 0 indicates the value at ambient pressure. For verl modC?Img tht(; prtt)essgrehdependegc?a ;3/]; phonon ;requenues
small P, the pressure derivative of the phonon frequency i y modifying the bond-charge model. Moreover, fewer pa-

h h P 2 Ci
=gh =gh =

h
Exx~ Eyy~ €27 _3_B+§

exx(P)=

exx(P)=£,,(0)+

. rameters are used with the modified BCM, (&% harmonic
approximated by plus six strain modifiepsvs 22. Also, for GaAs the pressure
do  (e?,P)—w(£%0) bending of the TA branch near th¢ zone boundary is not
— = , (32 found to be as strong as that found in Ref. 2. From the
dpP P

one-dimensional analysis by WeBeone would expect that
where the superscrip® and 0 indicate values for applied these branches become even flatter as pressure is increased
hydrostatic pressure and for ambient conditions, respectivelylue to a decrease in the ion-BC interaction and a slight in-
dw/dP values for bulk and strained-layer films are compareccrease in the BC-BC interaction.

in Fig. 5 for Ge pseudomorphically grown on(@1) along The Grineisen parameters calculated here are in good
the growth direction. agreement with the available data from experiment ahd
initio calculations. The model is poorest fgro(L) for Si
lIl. DISCUSSION and Ge, mirroring the disagreement between the experimen-

tal and BCM calculated values fas (L) at ambient pres-
Sui and Hermahused a modified Keating/VFF model to sure. There is not a similar correlation between the errors in
study the strain-dependent phonon properties of Si and Giéhe model phonon frequencies and Geisen parameters for
and heterostructures composed of these materials, both lather points in the Brillouin zone. For all three materials, the
using the quasiharmonic approximation used here and bgrineisen parameter fit is best for the TA branches, which is
adding cubic anharmonic terms to the interaction potentialnot surprising since at ambient pressure the BCM fits TA
The mode Groeisen parameters obtained here for Si and Gehonon dispersion particularly well.
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As can be seen from Fig. 2, the fit for the mode @Baisen One important consideration in assessing this modified
parameters of GaAs is better than that of Si and Ge. In conBond-charge model is whether it can be simplified, for ex-
trast, the fit for phonon dispersion at ambient pressure showample, by including fewer terms in the ambient-pressure
the opposite trend. The reason for this may be the consignodel. Webet has shown that for Ge there is good agree-

tency of the data points used in the fitting process. sincanent between the experimental and calculated dispersion

; e -nei interac-
relatively few mode Gmeisen parameters have been mea_urves even when only nearest-neighbor Coulomb

o ; tions are included. However, the Grisen parameters can-
sured for Geab initio—determined parameters were used, "o it to the modified BCM without these long-range
when an experimental value was not available, as was dong,jomh forces. Also, Ref. 19 has shown that the BCM can
in Ref. 3. For GaAs, all the Gneisen parameters used have he fitted to group IV materials with only three parameters, by
been obtained experimentally, though from different meataking ion-ion and ion-BC central force constants equal, and
surementgTable I)). The GaAs fit was weighted by using the that this fit is as good as that for the original four-parameter
experimentally determined errors. However, for Ge the sam&/eber model. However, the Qraisen parameters cannot be
error was assumed for all points because the error irathe fitted well to the quasiharmonic version of this three-
initio—obtained points is uncertain, and so the fit was unparameter model. Furthermore, from the fitted ti&isen pa-
weighted. This assumption about the error, which is really afiameters for Si and Ge, it is seen that the strain coefficient of
uncertain error, along with the possibility of large errors inthese two force constantsn(; j, and mj;_gc) are almost
these calculated points, could have caused the fit for Ge to Bdual in magnitude, but opposite in sign. This suggests that
poorer than that for GaAs. Errors in the experimental datdh€ three-parameter model is not physical.

base(Table 1)) may be the reason why the Si fit is poorer Since it is well known that the parameter fits for phenom-
than that for GaAs. enological lattice-dynamics models are not unig(i¥:?*a

second consideration is whether the fit to the quasiharmonic
model can be improved by a better choice of ambient-
pressure parameters. This nonuniqueness is partly due to the
limited data set used for the fit. Generally, phonon frequen-
cies, and sometimes also elastic constants, are used. How-
: ever, phonon eigenvectors are rarely used because experi-
eterm;y ;, are nearly equal for the three materials(88.63;  ontal phonon displacements are not available for most
—12.70, Ge (19.83-12.73, and GaAs(18.48;-12.77,  materials. Clearly, a parameter set that is obtained with lim-
respectively. The differences in the lattice-dynamical paramjieq input data can lead to some false predictions. For ex-
eters for Ge and GaAs¢Table ) illustrate the differences ample, the eigenvectors of LA and LO phonon modes at the
between a homopolar and a heteropolar semiconductor, singe point in GaAs calculated using the BCM parameter sets
their reduced masses are nearly the same. from Refs. 9 and 17 do not agree with the experimental
In the bond-charge model, the TA mode frequency afindings; these sets were derived from phonon frequencies
the X point for Ge is related to the force constants asand, for Ref. 9, also from elastic and piezoelastic constants.
w%a (X)<[Agi+Bf] * whereAgs andByy are the effective  Another reason for nonunique parameter sets is the choice of
ion-BC central and noncentral force constants, respectivelfthe interactions between the atoms used in the model. If there
(Agir is composed ofb 5. and Coulombic terms, whilBo  is overlap of some of the interaction potentials chosen, there
is from the Coulombic termsThe values obtained for the  will be strong correlations between the model parameters,
parameters of Eq22) suggest a weakening in these effective especially in models with a large number of adjustable pa-
interactions, which is consistent with the trend in the ion-ionrameters.
force constant$d [, _;,) which increase under pressure. For  The parameters of the bond-charge model are highly cor-
GaAs, on the other hand, the bond charges move towards thelated and several different sets of force constants give simi-
center of the bond, which is accompanied by an increastar )? in least-squares fits. For Ge, there are four-parameter
(decreasgin the ion-BC force constants for interactions in- sets given in Ref. 8 for the BCM with and without Coulomb
volving the cationanion; this tends to make it similar to the interactions turned off beyond the first nearest neigl{tler
homopolar(Ge) configuration. The “metalliclike” force con- rived using elastic constants and phonon frequencies at the
stant (ion-ion) increases with a coefficient nearly equal to X, L, I', andK points and the four-parameter fit in Ref. 19
that for Ge. The negative zone-boundary TA @isen pa- (fitted to a much larger number of phonon frequencies, and
rameters can also be discussed in terms of the onewithout elastic constantsFor GaAs, the two distinct sets
dimensional analysis by Webgin this picture, the low fre-  obtained in Ref. 17 have nearly equdl both of which give
quency and flat structure of zone-boundary TA modes arenarginally better fits to the phonon dispersion than does the
associated with the ratio of the BC-BC force constant to theset from Ref. 9. Each of these different force-constant sets
ion-BC force constant and adiabatic movement of bondvas used in the quasiharmonic BCM to determine which, if
charges. The higher the ratio the lower and flatter the curveany, would lead to good fits with the inclusion of anharmo-
Under pressure the ion-BC interaction gets wedksrsug- nicity. As mentioned in Sec. Il B, only the force constants
gested by the positiven, g coefficients for Si and Geand  from Ref. 8 (Ge) and Ref. 9(GaAs were able to fit both
the BC-BC interaction gets strongé negativemg), which  ambient-pressure and strained phonon frequencies. This
makes the ratio of these two force constants higher than thalemonstrates that analysis of the higher-order, strain depen-
for the ambient-pressure case and lowers the frequencies. 8ence of phonon frequencies can help in determining a
a negative Groeisen parameter would suggest a decouplingphysically more meaningful set of force constants for the
of bond charges from ions. harmonic part of the interaction.

For all three semiconductorsy;, i, andmg are found to
be negative, anth;,_gc andm;, are positive. This means that
the ion-ion interactions get stronger with compression
whereas the ion-BC interactions get weaker. Also, the ion
ion force constants® [, ;,) and the associated strain param-
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It is known that the BCM overestimates the magnitude ofmay not be a good approximation for strained semiconduc-
the (dynamig effective chargé’ It is not easy to isolate and, tors.
consequently, determine a relationship between one of the
model interactions(parameterns and the effective charge.
Bond charge is not directly related to the effective charge
because they have different origins. The magnitude of the The bond-charge model has been modified to study the
effective charge is mainly determined by the asymmetry instrain dependence of phonon frequencies of diamond- and
the ion-BC force constants and Coulomb interaction. Sinceinc-blende-type semiconductors. Calculated modénGru
the modified BCM uses the Gmeisen parameters at zone eisen parameters are in good agreement with experimental
center for LO and TO phonons, it clearly reproduces thevalues. The pressure dependence of second-order elastic con-
change in effective charge with pressure, within a factor thastants has been investigated and reasonable agreement was
includes the dielectric constant and the effective mass, whicfound with experimental values. It has been shown by using
also depend on pressure. the quasiharmonic approximation that harmonic force con-

There are several ways to improve this quasiharmonistants of the model can be chosen more definitively by ana-
BCM model. One involves the use of eigendisplacements iyzing the strain dependence of phonon frequencies as well.
determining the harmonic force constants. Another involves his model can be applied to other group IlI-V semiconduc-
the assumption that all four bond charges in a unit cell ard¢ors, as well as to 1I-VI semiconductors.
identical. Although this is a good approximation for ambient-
pressure conditions, under arbitrary strain the change in the
magnitude of some of the bond charges might be different
from that of others. Yet another potential improvement in-  This work was supported by the Joint Services Electronics
volves relaxing the assumption of point bond charges, whiclProgram Contract No. DAAH04-94-G-0057.

IV. CONCLUDING REMARKS
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