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A phenomenological lattice dynamics model based on the bond-charge model has been developed that
describes how strain affects phonon frequencies and elastic constants in groups IV~homopolar! and III-V
~heteropolar! semiconductor thin films and strained layers. A quasiharmonic approach is adopted, using force
constants that depend linearly on strain. This model uses available experimental data and can predict the effect
of arbitrary strains on nonpolar and polar semiconductor films. Using this model, the phonon dispersion
relations are obtained for bulk and strained-layer heterostructures of Ge and GaAs on Si, and the mode
Grüneisen parameters and the pressure dependence of second-order elastic constants are determined for bulk
Si, Ge, and GaAs. Also, it is shown that analyzing the effect of strains on semiconductors leads to a better and
more physical set of force constants for the bond-charge model for unstrained materials.

I. INTRODUCTION

Studies of the lattice properties of strained semiconduc-
tors provide the information about lattice anharmonicity
needed for a fundamental understanding of phonons and
elastic constants and for the investigation of novel
heterostructures.1–5These investigations include determining
the dependence of zone-center optical phonon frequencies on
hydrostatic pressure~isotropic strain! and the dependence of
phonon frequencies on biaxial strain in strained-layer hetero-
structures, which are sometimes also under hydrostatic
pressure.3 Theoretical attempts to explain these findings can
be broadly divided into two categories: those based onab
initio density-functional theory, using either a linear-
response or frozen-phonon approach,6 and those based on
modifying phenomenological lattice-dynamical models.
These lattice-dynamical models account for the presence of
strain either by modifying the harmonic force constants,
which is known as the quasiharmonic approximation, or by
adding third- and higher-order anharmonic terms to the har-
monic Hamiltonian. In a previous study, Sui and Herman3

used both of these approaches to modify the Keating/
valence-force-field~VFF! model to study, both analytically
and numerically, the effect of arbitrary stress on phonon dis-
persion and elastic constants of group IV semiconductors and
strained layers of these materials. This treatment can be ap-
plied only to nonpolar semiconductors. The current paper
expands this study to polar semiconductors by modifying the
Weber bond-charge model7—9 ~BCM! by using the quasihar-
monic approximation. The modified bond-charge model is
applied to GaAs, a polar semiconductor, and, for comparison
purposes, to Si and Ge, nonpolar semiconductors.

The symmetry of a crystal can be altered by the presence
of strains, and this symmetry change can lift phonon degen-
eracies. Also, phonon frequencies shift linearly with strain to
first order. Such strains may result either from external
stresses or from specific growth conditions or modifications
of the materials. Built-in strains in epilayers and superlattices
are produced by lattice mismatch or by compression follow-
ing deposition at higher temperatures, due to the different

thermal expansion coefficients of the material layers in-
volved. The measurement of phonon frequencies can be used
as a diagnostic tool to determine such strains.10 For example,
Weinstein and co-workers11,12 have considered how hydro-
static pressure tuning of lattice-mismatch-generated internal
strain in two-component epitaxial films and multilayers
~groups III-V/III-V and II-VI/III-V systems! affects Raman
shifts. They used the microscopicp, q, andr parameters to
calculate the effect of tuning on the first-order Raman fre-
quencies in systems grown along the~001! and ~111! direc-
tions. Also, the folding of acoustic phonons and the confine-
ment of optical phonons in superlattices can give rise to new
k'0 zone-center phonons that are ir and/or Raman active,
depending on the superperiodicity. These can also be affected
by strain.

Several previous studies have attempted to model how
strain affects phonon energies in partially ionic zinc-blende
semiconductors. Cerdeiraet al.4 used the microscopicp, q,
and r parameters to account for the strain shift and splitting
of the zone-center phonon frequencies. They evaluated these
parameters by using Keating and valence-force-field models
and assumed that the splitting between zone-center TO and
LO modes in heteropolar semiconductors is independent of
strain. Later, Hu¨nermannet al.13 employed effective charge
deformation potentials to account for the different strain shift
of these modes. Talwar and Vandevyver2 used an 11-
parameter rigid-ion model to study the effects of pressure on
the vibrational properties of Ga-In pnictides. While their
one-phonon and two-phonon densities of states, Debye tem-
peratures, Gru¨neisen constants, and linear thermal expansion
coefficients were all in reasonably good agreement with ex-
isting experimental data, their model predicted flatness of the
lowest TA branches at ambient pressure but not at elevated
pressures. This raised the question of whether the bending of
the TA branch under compression was an artifact of the rigid-
ion model or was due to the peculiarity of compound semi-
conductors.

Weinstein and Zallen1 suggested use of the bond-charge
model to study the pressure dependence of phonon disper-
sion relations. Mayer and Wehner14 tried to extend the BCM
to account for the strain-dependent phonon properties of Si

PHYSICAL REVIEW B 15 MARCH 1996-IIVOLUME 53, NUMBER 12

530163-1829/96/53~12!/7775~10!/$10.00 7775 © 1996 The American Physical Society



by including third-order anharmonic potentials. The model
Grüneisen parameters they obtained were not in good agree-
ment with available experimental values. They suggested
that the problem was in the harmonic part of the potentials
and then modified the BCM by including shell interactions
similar to those in the shell model.15 This model with eight
harmonic and five anharmonic parameters produced reason-
able agreement with experimental results. Very good agree-
ment is obtained here by modifying the original BCM, with
no added shells.

In this paper, the bond-charge model is reviewed in Sec.
II A. This subsection also details how the BCM can be modi-
fied to include strain by modifying the force constants. In
Sec. II B, the strain-modified force constants are determined
by fitting the model to the experimentally available Gru¨n-
eisen parameters. The mode Gru¨neisen parameters are deter-
mined along theG-D-X-K-G-L-X directions in bulk Si, Ge,
and GaAs. Section II C discusses how biaxial strain in the
~001! and ~111! planes affects phonon frequencies in GaAs
and Ge epilayers on Si. This is followed by the treatment of
the pressure dependence of phonon frequencies in strained
Ge layers on Si~001! in Sec. II D. These results are discussed
in Sec. III, and concluding remarks are presented in Sec. IV.
A preliminary version of this paper was published as Ref. 16.

II. MODEL

A. The bond-charge model

1. Ambient pressure

Several lattice-dynamical models have been designed to
reproduce phonon dispersion curves, determined expermen-
tally at ambient pressure, to the desired accuracy. One im-
portant characteristic of the phonon dispersion of diamond
and zinc-blende semiconductors at ambient pressure that
must be reproduced by the model is the very low frequency
of TA branch phonons relative to LA phonons and the flat-
ness of the TA branches away from the zone center. Strauch
and Dorner17 have compared the major phenomenological
models on the basis of reproducing the phonon frequencies
and eigenvectors and elastic constants of GaAs. The Weber
bond-charge model7–9 was found to be the model with the
fewest adjustable parameters@four parameters for most
diamond-structure materials~five for diamond! and six pa-
rameters for zinc-blende materials# to give the best fit to the
experimental dispersion curves.

In the bond-charge model, adiabatically moving, pointlike
bond charges~BC’s! are introduced on the bonds to mimic
the charge distribution of bonding electrons.8 For homopolar
semiconductors the BC’s are in the middle of the bond,
whereas for ~heteropolar! III-V semiconductors they are
nearer to the anions. The main BCM interactions are~a! the
central potential between nearest-neighbor ions~ion-ion!
Fi1-i2, ~b! the central potential between nearest-neighbor
ions and BC’s~ion-BC! F in-BC ~n51, 2!, ~c! the Keating
bond-bond bending interaction~BC-BC! Vbb , and ~d! the
Coulomb interactions between all ion-ion, BC-BC, and
ion-BC pairsVCoulomb. These interactions are depicted in Fig.
1. Metal-like bonding is represented by the short-range cen-
tral forces between ions~Fi1-i2! and covalent bonding is rep-

resented by the Keating interactions between the BC’s~Vbb!.
For interaction~b! there are separate terms due to the inter-
actions of the bond charges with cations and anions, and for
interaction~c! there are different force constants associated
with the BC-cation-BC and BC-anion-BC angles.

Bond charges of magnitude2Ze are located at
r 15r 0(11p)/2 andr 25r 0(12p)/2, wherer 1 andr 2 are the
respective distances to the cation~always labeled as 1! and
anion ~labeled as 2!, respectively, andr 0 is the bond length
between nearest-neighbor ions. For homopolar~diamond!
semiconductorsp50 and for III-V ~zinc-blende! semicon-
ductors, including GaAs, it has been found thatp50.25 at
ambient pressure. Ions are assumed to carry the charge 2Ze.

The total energy of the unit cell can be written using the
above interactions:

F total54F i1-i2~r 0!14F i1-BC~r 1!14F i2-BC~r 2!16@Vbb
~1!

1Vbb
~2!#16@C1~ t1!1C2~ t2!#2aM

4Z2e2

«r 0
, ~1!

where« is the dielectric constant,aM is the Madelung con-
stant, andt1 and t2 are the distances between any pair of
bond charges adjacent to ion 1 and ion 2, respectively; the
last term is the total Coulomb energy of the unit cell. This
equation also includes an additional central force interaction
~C! between bond charges, which has been found to improve
the model.9 It is defined by

C185C2850 and C1952C295~b22b1!/8, ~2!

wherebn is defined below.
In the harmonic approximation, the equation of motion of

the crystal is written as18

Mküi~ lk!52
]F total

]ui~ lk!
52 (

l 8k8 j
w i j ~ lk; l 8k8!uj~ l 8k8!,

~3!

FIG. 1. Structure of the unit cell and the interactions in the
bond-charge model.
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wherelk is the index for thekth atom in thel th unit cell,Mk
is the mass of atomk, andui( lk) is thei th component (x,y,
or z! of the displacement of atomlk. w i j ( lk; l 8k8) is called
the atomic force constant and is given by

w i j ~ lk; l 8k8!5
]2F total

]ui~ lk!]uj~ l 8k8!
U
0

, ~4!

where 0 implies that the derivatives are evaluated at the equi-
librium point andFtotal is the total potential energy of the
unit cell.

The explicit form of the Keating bond-bending interaction
is

Vbb
~n!~k;k8!5

bn

8a0n
2 @R~kn!•R~k8n!1a0n

2 #2,

k,k853,4,5,6, ~5!

wheren51 or 2 depending on whetherk andk8 is adjacent
to ion 1 or ion 2,R~kn! is the position vector of the BC with
respect to the ion at the bond-angle vertex, and
a 0n
2 52R~kn!•R~k8n!u0.
The atomic force constant for each of the three central

interactions~Fi1-i2, F i1-BC, andF i2-BC) can be expressed
as18

w i j
cent~ lk; l 8k8!5H r i r jr 2 FF92

1

r
F8G

1
d i j
r

F8J U
r5x~ lk!2x~ l 8k8!

, ~6!

wherex( lk) is the position vector of the particlek in the l th
unit cell.

The atomic force constant from the Keating-type interac-
tion ~c!, differentiated with respect to bond charges only, is

w i j
K~ lk; l 8k8!5

bn

4a0n
2 Ri~k8n!Rj~kn!, k,k853,4,5,6,

~7!

while that differentiated with respect to bond charges and
ions is

w i j
K~ lk; l 8k8!5

bn

4a0n
2 (

t53

6

Rj~tn!@Ri~k8n!1Ri~tn!#,

k51,2 andk853,4,5,6. ~8!

The values ofF8 in Eq. ~6! are fixed by the lattice stabil-
ity constraint, which is determined by the equilibrium condi-
tions

]F total

]r 0
U
r05~r0!equilibrium

50, ~9a!

]F total

]p U
p5~p!equilibrium

50. ~9b!

Using Eqs.~1! and ~9a!,

F i1-i28 52aM

Z2e2

2«r 0
2 . ~10!

Using Eqs.~1! and ~9b!, along with the auxiliary condition
given by Rustagi and Weber,9

~11p!F i1-BC8 1~12p!F i2-BC8 50, ~11!

one finds

F i1-BC8

r 1
52

12p

11p

daM

dp

Z2e2

«r 0
3 ~12!

and

F i2-BC8

r 2
52

11p

12p

daM

dp

Z2e2

«r 0
3 . ~13!

So at ambient pressure the BC model has six free param-
eters:F i1-i29 , F i1-BC9 , F i2-BC9 , b1, b2, andz5Z2/«. For ho-
mopolar systemsF i1-BC5F i2-BC andb15b2, and so there
are only four free parameters.

The equation of motion, Eq.~3!, is solved with a choice of
displacement of the form

ui~ lk!5ui~k!exp@2 ivt1 ik•x~ l !# ~14!

which transforms Eq.~3! into

Mkv2~k!ui~k!5(
k8, j

Di j ~kk8;k!uj~k8!, ~15!

where Di j (kk8;k! are the elements of the Fourier-
transformed dynamical matrix, which are given by

Di j ~kk8;k!5(
l

w i j ~0k; lk8!exp$2 ik•@x~0k!2x~ lk8!#%

1Di j
C~kk8;k!, ~16!

whereD i j
C(kk8;k! is the Coulomb part of the dynamical

matrix which is evaluated by using Ewald’s method.18

Equation~15! is a set of 18 equations for the displace-
ments of six particles. It can be reduced to a set of six equa-
tions for the displacements of the ions because the bond
charges move adiabatically. This gives

Deffective5Dion-ion2@DBC-ion#* @DBC-BC#21DBC-ion, ~17!

where theD’s are those parts of the dynamical matrix refer-
enced by their superscripts and* denotes Hermitian conju-
gation. The electron~bond-charge! interactions are now ef-
fectively included as ion-ion forces.

Vibrational frequencies and displacements are obtained
from the eigenvalue equation

uDi j
effective~kk8;k!2Mkv2~k!d i jdkk8u50, ~18!

where nowk andk851,2. The second-order elastic constants
are calculated with the long-waves method.18 The values of
the force constants used at ambient pressure are listed in
Table I.
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2. Arbitrary strain

For a strained crystal, the harmonic approximation is still
used and it is assumed that atoms in the deformed crystal
experience harmonic oscillations about their new equilibrium
positions. The effect of strain is incorporated by including
changes in the elements of dynamical matrix due to the pres-
ence of the strain.

The change in the atomic force constants derived from
central forces@Eq. ~6!# due to strain is

D@w i j
cent~ lk; l 8k8!#5DF r i r jr 2 GFF92

F8

r G1
r i r j
r 2

D@F9#

1Fd i j2 r i r j
r 2 GDFF8

r G ~19!

and for Keating-type interactions@Eq. ~7!# it is

D@w i j
K~ lk; l 8k8!#5bnDFRi~nk8!Rj~nk!

4a0n
2 G

1
Ri~nk8!Rj~nk!

4a0n
2 Dbn . ~20!

The first terms in Eqs.~19! and ~20! give a ‘‘lattice con-
tribution’’ due to changes in the geometry due to strain,
which are, respectively,

1

r 2 FF92
F8

r G(
l

F r id jl1r jd il2
r i r j r l

r 2 GDr l ~21a!

whereDr is the strain-induced change inr , and

bnDFRi~nk8!Rj~nk!

4a0n
2 G . ~21b!

In the second and third terms of Eq.~19! and the second
term of Eq.~20!, the changes in the first and second potential
derivatives and the Keatingbn are taken in thequasihar-
monic approximation. The central ion-ion and ion-BC inter-
action parameters are scaled with the change in the distance
between the two ‘‘particles’’~i.e., ions or BC’s!, while the
Keating bond-bending parameters are scaled with the change
in the distance between BC’s and the change in the angle
between the bond charges. Consequently,

DF i1-i29 5F i1-i29 Fmi1-i2

Dr 0
r 0

G , ~22a!

DF in-BC9 5F in-BC9 Fmin-BC

Dr n

r n
G , n51,2, ~22b!

Dbn~k,k8!5bnFmbnS Dtkk8
tkk8

D 1 l bn

D@cos~uknk8!#

cos~uknk8
0

! G ,
n51,2, ~22c!

whereDr 0 is the change in the ion-ion distance,Dr n is the
change in the distance between ionn and the bond charge,
tkk8 is the distance between the bond chargesk andk8, and
uknk8
0 is the equilibrium bond angle~no strain! between bond
chargesk andk8 around the ionn. Equations~10!, ~12!, and
~13! for F8 still apply at the new strained equilibrium posi-
tion.

Only either the magnitude or position of the bond charge
is assumed to change, according to

Dz5z Fmz

Dr

r G , ~22d!

wherez is eitherZ2/« or p, andr refers to the length of the
bond on which that bond charge is located. The Coulomb

TABLE I. Harmonic force constants and their strain-modifier parameters. The first five rows have units of
e2/V, whereV is the unit-cell volume~with data from Ref. 8 for Si and Ge and Ref. 9 for GaAs!; the other
rows are unitless.

Si Ge GaAsa

Harmonic force constants
F i12 i29 18.63 19.83 18.48
F i1-BC9 19.41 17.13 7.05
F i2-BC9 19.41 17.13 48.15
b1 8.60 8.40 5.36
b2 8.60 8.40 8.24
z 0.180 0.162 0.187
Strain-modifier parameters
mi1-i2 212.70 212.73 212.77
mi1-BC 12.19 12.27 26.12
mi2-BC 12.19 12.27 9.74
mb1

22.75 21.18 24.97
mb2

22.75 21.18 22.66
l b1

23.18 22.54 23.63
l b2

23.18 22.54 2.51
mz 11.83 12.55 13.57

aReference 9 gives linear combinations of these harmonic force constants.

7778 53RESUL ERYIĞIT AND IRVING P. HERMAN



force constants are calculated for strained crystals by using
Ewald’s method, which includes any ‘‘lattice contribution.’’

For the most general case, there are a total of eight force-
constant-modifier strain parameters (m’s andl ’s! in Eq. ~22!.
For homopolar systems, this reduces to five parameters.

For an arbitrary strain, the position vectors and bond
angles change as

Dx~ lk!5uk5«–x~ lk!2aj@«yz ,«xz ,«xy#
T1ud , ~23!

D~cosuknk8!5
1

2a
@R~kn!•uk81R~k8n!•uk#, ~24!

whereud is the dynamic displacement,« is the symmetric
strain tensor,x is the bond vector,j is the internal strain
parameter,a5aL/4 for ions andaL/8 for bond charges~aL is
the lattice constant!, andT stands for transpose.

The dynamical matrix for the strained lattice is obtained
from Eq. ~16! by the replacements

w i j ~0k; lk8!→w i j ~0k; lk8!1D@w i j ~0k; lk8!#,

and

Di j
C→Di j

Custrained ~25!

whereD@wi j (0k; lk8)] is calculated from Eqs.~19! and~20!.
Vibrational frequencies and displacements are obtained by
using Eqs.~17! and ~18! with the above replacements.

B. Hydrostatic pressure

When the crystal is subjected to hydrostatic pressure, the
strain is diagonal and is given by«h52P/3B; P is the
applied pressure andB is the bulk modulus. The symmetry
of the crystal is not lowered and consequently the bond
angles do not change, so thel terms in Eq.~22c! vanish;
bond lengths change byDr5r 0«h . The force constants are
modified according to Eq.~22!. The lattice contribution
terms@Eqs.~21a! and ~21b!# are zero. All of them terms in
Eq. ~22! are determined here from the dependence of phonon
frequencies on hydrostatic pressure at critical points. This
dependence can be characterized by the mode Gru¨neisen pa-
rameter, which is defined as

g i52dlnv i /dlnV52Dv i /~3«hv i !, ~26!

whereV is the volume of the crystal andvi is the frequency
of the i th phonon mode.

Them’s are obtained by a nonlinear least-squares fit to
experimentally availablegi ’s at theG, X, andL points of the
Brillouin zone ~Table II!. The mode Gru¨neisen parameters
are calculated from Eq.~26! by taking the differences of the
mode frequencies obtained from Eq.~18!, by using the dy-
namical matrix@Eq. ~25!#, for ambient and small~;0.01!
hydrostatic strains.

The harmonic force constants used for Si and Ge are from
Ref. 8 and are listed in Table I, and the ‘‘input’’ mode Gru¨n-
eisen parameters are those used in Ref. 3 and are listed in
Table II. Several sets of~ambient-pressure! harmonic force
constants were tested for Ge, each of which reproduces lat-
tice properties at ambient pressure quite well. The quality of
the fit of the modified BCM was found to be sensitive to the
exact choice of harmonic force constants. Thex2 for the

quasiharmonic model fit of the Gru¨neisen parameters to the
experimental data is small~3.1! for the set from Ref. 8 and
larger~5.4! for that from Ref. 19. The quasiharmonic param-
eters for Si and Ge are listed in Table I. For Si and Ge,mi1-i2
andmb are found to be negative, andmi1-BC andmz are
positive. This means that the ion-ion interactions get stronger
with compression, whereas the ion-BC interactions get
weaker. For Ge,mi1-i2, 2mi1-BC, and2mz are almost equal
to each other~mi1-i2'212.7!; this is approximately true for
Si. For both Si and Ge,mb is very small, as is expected since
the Keating bond-bending interaction is dependent on the
bond angles and hydrostatic pressure does not change the
angle between the bonds.

The harmonic force constants used for GaAs are from
Ref. 9 and are listed in Table I, and the experimental mode
Grüneisen parameters are listed in Table II. This choice of
harmonic force constants is discussed in Sec. III. The calcu-
lated values ofm’s for GaAs are given in Table I. These are
the values obtained by taking the bond-charge position, and
not its magnitude, as the fitting parameter. Fits were poorer
when either only the bond charge was changed with strain or
both the bond charge and position were changed.~For Si and
Ge the bond-charge magnitude had to be changed.! mi1-i2 is
very similar to that for Si and Ge~'212.7!. mz'13.6 for
the bond-charge position which suggests that bond charges
are moving towards the center of the bond for isotropic
strain. Consequently, it is reasonable that the strain param-
eters for ion-BC interactions for the cation and anions
(mi1-BC andmi2-BC) have opposite signs.

In Fig. 2, the dispersions in the Si, Ge, and GaAs mode
Grüneisen parameters are plotted along theG-D-X-K-G-L-X
directions. Using these results, no substantial change in the
shape of the TA branches with pressure is found, which is
contrary to the results of Ref. 2.

The change in elastic constants is obtained by using the
method of long waves18 to obtain these constants for strained
and unstrained structures, using the respective force con-
stants, and then taking the difference. The pressure deriva-
tives of the elastic constants are presented in Table III for Si,
Ge, and GaAs. The calculated pressure derivatives of the

TABLE II. Mode Grüneisen parameters used in the nonlinear
least-squares fit.

Si Ge GaAs

gLO~G! 0.9860.06a 1.1460.02c 1.2360.02d

gTO~G! 0.9860.06a 1.1460.02c 1.3960.02d

gLO~X! 1.03b 1.17b

gTO~X! 1.5060.2a 1.49b 1.7360.07e

gLA~X! 1.03b 1.17b

gTA~X! 21.460.3a 21.5360.05c 21.6260.05e

gLO~L! 1.62b 1.62b

gTO~L! 1.3060.2a 1.28b 1.4860.15e

gLA~L! 0.45b 0.55b

gTA~L! 21.360.3a 21.4b 21.7260.15e

aReference 25~experimental!.
bReference 3~from ab initio calculation cited therein!.
cReference 26~experimental!.
dReference 23~experimental!.
eReference 20~experimental!.
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bulk modulusB for Si ~4.91!, Ge~5.21!, and GaAs~5.24! are
in reasonable agreement with the experimental values 4.24,
4.76, and 4.67,20 respectively, as are the calculated pressure
derivatives of the elastic constantsCi j for Si.

21 The general
trends in the change ofC11, C12, andC44 with pressure are

similar for Si, Ge, and GaAs.C11 andC12 change at nearly
the same rate, which is much faster than that forC44. The fit
would be even better if the force-constant strain-modifier pa-
rameters had been determined by using both the experimen-
tal Grüneisen parameters anddCi j /dP.

C. Biaxial strains

Nonuniform strains modify the symmetry of the crystal
and partially lift the degeneracy of some phonon modes, in
addition to shifting the mode frequencies. In this model, bi-
axial strains in the~001! and ~111! planes are used to deter-
mine thel parameters, which describe how the force constant
of the Keating bond-bending interaction changes when strain
changes bond angles@Eq. ~22c!#.

1. Biaxial strain in the (001) plane

Biaxial strain in the~001! plane can arise during pseudo-
morphic growth of a thin film on a~001! substrate with a
different lattice constant. The strain tensor can be decom-
posed into a hydrostatic part«h52(12C12/C11)«xx/3 and a
shear part «s52(112C12/C11)«xx/3, where «xx
5(as2af)/af , andas andaf are the lattice constants of the
substrate and film, respectively. TheCi j ’s are the~second-
order! elastic constants of the film.

The hydrostatic component of the strain affects only the
bond length, while the shear part changes only the bond
angles. The distance between bond charges is affected by
changes in both bond length and bond angle. Referring to
Fig. 1, the fractional change in the cosine of the bond angle
is 4«xx for the angles defined by the bond charge pairs 3-4,
3-5, 4-6, and 5-6, and it is28«xx for pairs 3-6 and 4-5. The
distance between the bond charges in each pair changes by
the same fraction. In homopolar materials, zone-center opti-
cal phonon frequencies split into a singlet and a doublet. In
heteropolar materials, zone-center LO and TO modes split
into a singlet and a doublet LO and a singlet and a doublet
TO. In superlattices, in addition to these strain shifts there is

FIG. 2. Dispersion in mode Gru¨neisen parameters along the
G-D-X-K-G-L-X directions for~a! Si ~circles are data from Ref. 3!,
~b! Ge ~circles are data from Ref. 3, diamonds are data from Ref.
26!, and~c! GaAs~circles are data from Ref. 20, diamonds are data
from Ref. 23!.

TABLE III. Pressure derivatives of elastic constants for Si, Ge,
and GaAs~unitless!.

Si Ge GaAs

dC11/dP
Calculated 4.9 5.2 5.3
Experimental 4.2a 4.6c

dC12/dP
Calculated 4.9 5.2 5.1
Experimental 4.2a 4.6c

dC44/dP
Calculated 2.1 2.9 2.4
Experimental 2.7a 1.2c

dB/dP
Calculated 4.91 5.21 5.24
Experimental 4.24b 4.76b 4.67b

aFrom Reference 21.
bFrom Reference 20.
cFrom Reference 2.
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a frequency shift for optical phonons as a result of
confinement.22

2. Biaxial strain in the (111) plane

When biaxial strain is in the~111! plane, in addition to the
macroscopic strain an internal strain parameterj is needed to
define uniquely the relative position of the atoms. This gives
the relative displacements of the two face-centered-cubic lat-
tices of the diamond structure.

The elements of the strain tensor are

«h5
2C44

2C441C1112C12
« i , ~27!

«o5
C1112C12

2C441C1112C12
« i , ~28!

where«h and«o are the hydrostatic and shear components,
and«i is the in-plane lattice mismatch strain.

There are two different bond-length and bond-angle
changes for this strain configuration. The change in the bond
angle defined by the 3-4, 3-5, and 3-6 pairs is the negative of
the change in other pairs. As with~001! strain, ~111! strain
splits each optical phonon at theG point into a singlet and a
doublet.

3. Results

For Si and Ge, to obtainl b1 the frequency splitting is

needed at theG point when there is biaxial strain in either the
~001! or ~111! plane; the~001! splitting is used here to de-
terminel b1 and the~111! splitting is used to check this value.

For GaAs, both strain configurations are needed to obtain
l b1 andl b2. The experimental data used are the same as those

cited in Ref. 3 for Si and Ge, and determined in Ref. 23 for
GaAs. The calculatedl parameters are presented in Table I.

In Figs. 3 and 4, phonon frequency shifts for GaAs and
Ge lattice matched to Si~001! and Si~111! ~biaxial strain of
;0.04 for both systems! are plotted using these strain-
modified force constants. For this~001! biaxial strain con-
figuration, the strain-induced shifts of the Ge LO and TO
modes are seen to be very similar to those for the GaAs LO
and TO modes, except the LO modes in Ge and GaAs differ
greatly towards the zone boundary. The shift in the GaAs TO
mode can become quite large~;25 cm21!. For the ~111!
strain configuration, the shifts and splittings of the corre-
sponding modes in Ge and GaAs are qualitatively similar.
For this configuration, the LO shift is significantly smaller
than that for the TO mode for both Ge and GaAs~;8 cm21

vs 20 cm21!.

FIG. 3. Phonon frequency shiftsDv along the growth direction
in ~a! Ge and~b! GaAs commensurately grown on Si~001!.

FIG. 4. Phonon frequency shiftsDv along the growth direction
in ~a! Ge and~b! GaAs commensurately grown on Si~111!.
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D. Strained films under hydrostatic pressure

At ambient pressure, the lattice mismatch for Ge or GaAs
grown on Si~001! is ;4%. Under hydrostatic pressure, the
hydrostatic part of the strain in the layer is

«xx
h 5«yy

h 5«zz
h 52

P

3B
1
2

3 F12
C12

C11
G«xx , ~29!

where«xx is the pressure-dependent lattice-mismatch strain,
defined by

«xx~P!5
as~P!2af~P!

as~P!
. ~30!

as(P) andaf(P) are the pressure-dependent lattice constants
for the substrate and film, respectively. Hydrostatic pressure
tunes the built-in biaxial strain through Eq.~30!, which to
first order inP gives

«xx~P!5«xx~0!1
af~0!

as~0! F 1

3Bf
2

1

3Bs
GP, ~31!

where a 0 indicates the value at ambient pressure. For very
small P, the pressure derivative of the phonon frequency is
approximated by

dv

dP
5

v~«P,P!2v~«0,0!

P
, ~32!

where the superscriptsP and 0 indicate values for applied
hydrostatic pressure and for ambient conditions, respectively.
dv/dP values for bulk and strained-layer films are compared
in Fig. 5 for Ge pseudomorphically grown on Si~001! along
the growth direction.

III. DISCUSSION

Sui and Herman3 used a modified Keating/VFF model to
study the strain-dependent phonon properties of Si and Ge
and heterostructures composed of these materials, both by
using the quasiharmonic approximation used here and by
adding cubic anharmonic terms to the interaction potential.
The mode Gru¨neisen parameters obtained here for Si and Ge

are similar to those determined in Ref. 3. The modified BCM
and Keating/VFF model have the same number of harmonic
force constants and they perform similarly.

In addition to obtaining numerical results, Ref. 3 used the
quasiharmonic approximation to derive analytic expressions
that describe how strain changes phonon frequencies at the
critical points in the Brillouin zone~G,X,L!, which could be
fitted by experiment. In the current work, it is difficult to
obtain analytic expressions because of the structure of the
dynamical matrix@Eq. ~17!# and the difficulty in inverting a
12312 matrix analytically. Though this matrix has a simpler
structure for high-symmetry points and directions, it still
cannot be inverted analytically for these special cases.@How-
ever, analytic expressions at theG point can be derived for
homopolar~group IV! systems.#

One important difference between the findings of this
work and those of Ref. 3 is in the change in the TA mode
frequencies along the growth direction for Ge~Si! grown on
Si ~Ge! ~001!. Contrary to the results of Ref. 3~see Figs. 5
and 6 in Ref. 3!, it is found here thatDv~TA! is negative
~positive! along the growth direction for Ge on Si@Fig. 3~a!#
~Si on Ge, not shown!—increasing in magnitude towards the
zone boundary; this is also in agreement with the results of
the ab initio calculations of Ref. 6. Taking into account the
negative mode Gru¨neisen parameter for these branches and
the fact that the traceless part of the biaxial strain does not
affect the transverse mode frequencies much, it is expected
that Dv~TA! is negative~positive! for Ge on Si~Si on Ge!
growth. This difference with Ref. 3 suggests that the interac-
tions included in the Keating/VFF model may be insufficient
and that the BCM interactions may be physically more
sound. In the Keating/VFF model the flatness of the TA
mode dispersion is determined by long-range interactions,
while in the bond-charge model it is determined by a com-
bination of ion-BC and BC-BC interactions.

Talwar and Vandevyver2 modified the 11-parameter rigid-
ion model to study the pressure dependence of several lattice
properties, such as the thermal expansion coefficient, Gru¨n-
eisen parameters, and Debye temperature, of group III-V ma-
terials by using 11 pressure parameters to scale the force
constants. It is seen here that there is much better agreement
in modeling the pressure dependence of phonon frequencies
by modifying the bond-charge model. Moreover, fewer pa-
rameters are used with the modified BCM, 12~six harmonic
plus six strain modifiers! vs 22. Also, for GaAs the pressure
bending of the TA branch near theX zone boundary is not
found to be as strong as that found in Ref. 2. From the
one-dimensional analysis by Weber,7 one would expect that
these branches become even flatter as pressure is increased
due to a decrease in the ion-BC interaction and a slight in-
crease in the BC-BC interaction.

The Grüneisen parameters calculated here are in good
agreement with the available data from experiment andab
initio calculations. The model is poorest forgLO(L) for Si
and Ge, mirroring the disagreement between the experimen-
tal and BCM calculated values forvLO(L) at ambient pres-
sure. There is not a similar correlation between the errors in
the model phonon frequencies and Gru¨neisen parameters for
other points in the Brillouin zone. For all three materials, the
Grüneisen parameter fit is best for the TA branches, which is
not surprising since at ambient pressure the BCM fits TA
phonon dispersion particularly well.

FIG. 5. Pressure derivatives of mode frequencies for Ge. Dashed
lines are for Ge commensurately grown on Si~001! and solid lines
are for bulk Ge.
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As can be seen from Fig. 2, the fit for the mode Gru¨neisen
parameters of GaAs is better than that of Si and Ge. In con-
trast, the fit for phonon dispersion at ambient pressure shows
the opposite trend. The reason for this may be the consis-
tency of the data points used in the fitting process. Since
relatively few mode Gru¨neisen parameters have been mea-
sured for Ge,ab initio–determined parameters were used
when an experimental value was not available, as was done
in Ref. 3. For GaAs, all the Gru¨neisen parameters used have
been obtained experimentally, though from different mea-
surements~Table II!. The GaAs fit was weighted by using the
experimentally determined errors. However, for Ge the same
error was assumed for all points because the error in theab
initio–obtained points is uncertain, and so the fit was un-
weighted. This assumption about the error, which is really an
uncertain error, along with the possibility of large errors in
these calculated points, could have caused the fit for Ge to be
poorer than that for GaAs. Errors in the experimental data
base~Table II! may be the reason why the Si fit is poorer
than that for GaAs.

For all three semiconductors,mi1-i2 andmb are found to
be negative, andmi2-BC andmz are positive. This means that
the ion-ion interactions get stronger with compression,
whereas the ion-BC interactions get weaker. Also, the ion-
ion force constants (F i1-i29 ! and the associated strain param-
etermi1-i2 are nearly equal for the three materials: Si~18.63;
212.70!, Ge ~19.83;212.73!, and GaAs ~18.48;212.77!,
respectively. The differences in the lattice-dynamical param-
eters for Ge and GaAs~Table I! illustrate the differences
between a homopolar and a heteropolar semiconductor, since
their reduced masses are nearly the same.

In the bond-charge model, the TA mode frequency at
the X point for Ge is related to the force constants as
vTA
2 (X)}@Aeff

211Beff
21#21 whereAeff andBeff are the effective

ion-BC central and noncentral force constants, respectively.
~Aeff is composed ofF i -BC9 and Coulombic terms, whileBeff
is from the Coulombic terms.! The values obtained for them
parameters of Eq.~22! suggest a weakening in these effective
interactions, which is consistent with the trend in the ion-ion
force constants~F i1-i29 ! which increase under pressure. For
GaAs, on the other hand, the bond charges move towards the
center of the bond, which is accompanied by an increase
~decrease! in the ion-BC force constants for interactions in-
volving the cation~anion!; this tends to make it similar to the
homopolar~Ge! configuration. The ‘‘metalliclike’’ force con-
stant ~ion-ion! increases with a coefficient nearly equal to
that for Ge. The negative zone-boundary TA Gru¨neisen pa-
rameters can also be discussed in terms of the one-
dimensional analysis by Weber.7 In this picture, the low fre-
quency and flat structure of zone-boundary TA modes are
associated with the ratio of the BC-BC force constant to the
ion-BC force constant and adiabatic movement of bond
charges. The higher the ratio the lower and flatter the curve.
Under pressure the ion-BC interaction gets weaker~as sug-
gested by the positivemin-BC coefficients for Si and Ge! and
the BC-BC interaction gets stronger~a negativemb!, which
makes the ratio of these two force constants higher than that
for the ambient-pressure case and lowers the frequencies. So
a negative Gru¨neisen parameter would suggest a decoupling
of bond charges from ions.

One important consideration in assessing this modified
bond-charge model is whether it can be simplified, for ex-
ample, by including fewer terms in the ambient-pressure
model. Weber8 has shown that for Ge there is good agree-
ment between the experimental and calculated dispersion
curves even when only nearest-neighbor Coulomb interac-
tions are included. However, the Gru¨neisen parameters can-
not be fitted to the modified BCM without these long-range
Coulomb forces. Also, Ref. 19 has shown that the BCM can
be fitted to group IV materials with only three parameters, by
taking ion-ion and ion-BC central force constants equal, and
that this fit is as good as that for the original four-parameter
Weber model. However, the Gru¨neisen parameters cannot be
fitted well to the quasiharmonic version of this three-
parameter model. Furthermore, from the fitted Gru¨neisen pa-
rameters for Si and Ge, it is seen that the strain coefficient of
these two force constants (mi1-i2 and mi1-BC) are almost
equal in magnitude, but opposite in sign. This suggests that
the three-parameter model is not physical.

Since it is well known that the parameter fits for phenom-
enological lattice-dynamics models are not unique,17,19,24 a
second consideration is whether the fit to the quasiharmonic
model can be improved by a better choice of ambient-
pressure parameters. This nonuniqueness is partly due to the
limited data set used for the fit. Generally, phonon frequen-
cies, and sometimes also elastic constants, are used. How-
ever, phonon eigenvectors are rarely used because experi-
mental phonon displacements are not available for most
materials. Clearly, a parameter set that is obtained with lim-
ited input data can lead to some false predictions. For ex-
ample, the eigenvectors of LA and LO phonon modes at the
X point in GaAs calculated using the BCM parameter sets
from Refs. 9 and 17 do not agree with the experimental
findings; these sets were derived from phonon frequencies
and, for Ref. 9, also from elastic and piezoelastic constants.
Another reason for nonunique parameter sets is the choice of
the interactions between the atoms used in the model. If there
is overlap of some of the interaction potentials chosen, there
will be strong correlations between the model parameters,
especially in models with a large number of adjustable pa-
rameters.

The parameters of the bond-charge model are highly cor-
related and several different sets of force constants give simi-
lar x2 in least-squares fits. For Ge, there are four-parameter
sets given in Ref. 8 for the BCM with and without Coulomb
interactions turned off beyond the first nearest neighbor~de-
rived using elastic constants and phonon frequencies at the
X, L, G, andK points! and the four-parameter fit in Ref. 19
~fitted to a much larger number of phonon frequencies, and
without elastic constants!. For GaAs, the two distinct sets
obtained in Ref. 17 have nearly equalx2, both of which give
marginally better fits to the phonon dispersion than does the
set from Ref. 9. Each of these different force-constant sets
was used in the quasiharmonic BCM to determine which, if
any, would lead to good fits with the inclusion of anharmo-
nicity. As mentioned in Sec. II B, only the force constants
from Ref. 8 ~Ge! and Ref. 9~GaAs! were able to fit both
ambient-pressure and strained phonon frequencies. This
demonstrates that analysis of the higher-order, strain depen-
dence of phonon frequencies can help in determining a
physically more meaningful set of force constants for the
harmonic part of the interaction.
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It is known that the BCM overestimates the magnitude of
the ~dynamic! effective charge.17 It is not easy to isolate and,
consequently, determine a relationship between one of the
model interactions~parameters! and the effective charge.
Bond charge is not directly related to the effective charge
because they have different origins. The magnitude of the
effective charge is mainly determined by the asymmetry in
the ion-BC force constants and Coulomb interaction. Since
the modified BCM uses the Gru¨neisen parameters at zone
center for LO and TO phonons, it clearly reproduces the
change in effective charge with pressure, within a factor that
includes the dielectric constant and the effective mass, which
also depend on pressure.

There are several ways to improve this quasiharmonic
BCM model. One involves the use of eigendisplacements in
determining the harmonic force constants. Another involves
the assumption that all four bond charges in a unit cell are
identical. Although this is a good approximation for ambient-
pressure conditions, under arbitrary strain the change in the
magnitude of some of the bond charges might be different
from that of others. Yet another potential improvement in-
volves relaxing the assumption of point bond charges, which

may not be a good approximation for strained semiconduc-
tors.

IV. CONCLUDING REMARKS

The bond-charge model has been modified to study the
strain dependence of phonon frequencies of diamond- and
zinc-blende-type semiconductors. Calculated mode Gru¨n-
eisen parameters are in good agreement with experimental
values. The pressure dependence of second-order elastic con-
stants has been investigated and reasonable agreement was
found with experimental values. It has been shown by using
the quasiharmonic approximation that harmonic force con-
stants of the model can be chosen more definitively by ana-
lyzing the strain dependence of phonon frequencies as well.
This model can be applied to other group III-V semiconduc-
tors, as well as to II-VI semiconductors.
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